About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generatior

Conclusion and future work

Formal Verification and Code-Generation of Mersenne-Twister Algorithm

Takafumi Saikawa and Kazunari Tanaka and Kensaku Tanaka

December 7, 2020

About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

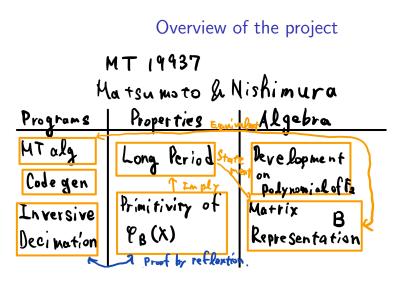
Mersenne-Twister (Matsumoto and Nishimura, 1998)

Our work is based on the original work by Matsumoto and Nishimura:

- Mersenne-Twister is a pseudo-random number generator
 - Long-period : 2¹⁹⁹³⁷ 1
 - Good stochastic properties, e.g., 623-distribution
- Two presentations: algebraic and pseudocode
- Their equivalence is implicit
- Proof of long-period property
 - Reduce the property to the irreducibility of a polynomial
 - Use "inversive-decimation" to show the irreducibility

About Mersenne-Twister

Overview of the project


Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

- Orange: finished formalizations
- Blue: the last remaining part for the long-period property

About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

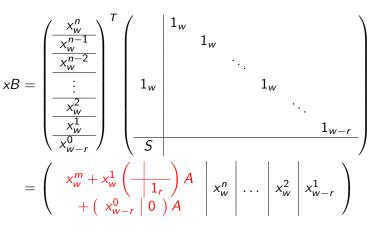
Linear-algebraic presentation 1 1 1_r 5 = A =*a*0 **a**2 a_1 a_{w-1} . . . 1_w 1_w B = 1_w 1_{w-r} \overline{S}

About Mersenne-Twister

Overview o the project

Presentations and equivalence

Irreducibility implies Long Period


Inversivedecimation

Code generation

Conclusion and future work

Linear-algebraic presentation

(Lemma mulBE in cycle.v)

The linear recurrence : $x_w^m + x_w^1 \left(\frac{1}{1_r} \right) A + \left(x_{w-r}^0 \mid 0 \right) A$.

About Mersenne-Twister

Overview of the project

```
Presentations
and
equivalence
```

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

Pseudocode presentation

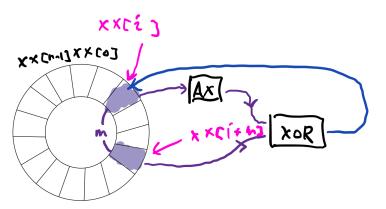
(Definition next_random_state in mt.v)

u	:= 1100 ; (w-r) ones and r zeroes
11	:= 0011 ; (w-r) zeroes and r ones
i	:= 0
xx[0]],,xx[n-1] := "initial words, not all-zero"
LOOP:	
У	:= (xx[i] AND u) OR (xx[(i+1) mod n] AND 11)
$xx[i] := xx[(i+m) \mod n] XOR (y >> 1)$	
	XOR (if $LSB(y) = 0$ then 0 else aa)
OUTPU	JT xx[i]
i	:= (i+1) mod n
GOTO	LOOP

About Mersenne-Twister

Overview of the project

Presentations and equivalence


Irreducibility implies Lon Period

Inversivedecimation

Code generatior

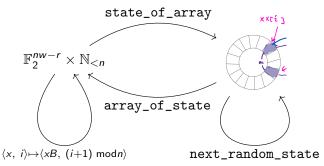
Conclusion and future work

Pseudocode presentation

About Mersenne-Twister

Overview of the project

Presentations and equivalence


Irreducibility implies Long Period

Inversivedecimation

Code generatior

Conclusion and future work

Equivalence and data structures

- 𝑘^{nw-r} × ℕ_{<n} ∋ ⟨x, i⟩ is a pair of a state vector and the number of multiplications by B
- state_of_array and array_of_state are inverses to each other.
- The equivalence (Lemma next_random_stateE): for any state σ, next_random_state(σ) = state_of_array((array_of_state(σ))B)

About Mersenne-Twister

Overview of the project

```
Presentations
and
equivalence
```

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

Data structures in Coq

Record vector_with_counter :=

```
vector \in F_2^{nw-r};
counter \in N;
_ : counter < n;
```

}.

{

 $\mathbb{F}_{2}^{nw-r} \times \mathbb{N}_{\leq n}$:

```
Record valid_random_state :=
{
```

```
\begin{array}{ll} \langle \sigma, k \rangle \ \in \ (\texttt{list } N) \ \times N; \\ \_ : \ \texttt{size} \ (\sigma) \ == \ \texttt{n}; \\ \_ : \ k \ < \ \texttt{n}; \\ \_ : \ \forall i \ < \ \texttt{n}, i \ < \ \texttt{size}(\sigma) \Rightarrow \sigma[i] \ < \ 2^w; \\ \_ : \ \texttt{The lower } r \ \texttt{bits of } \sigma[k] \ \texttt{are } 0; \\ \end{array}
```

About Mersenne-Twister

Overview o the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

Irreducibility implies Long-period

Lemma (irreducibleP)

Let $x \in \mathbb{F}_2[X]/\varphi(X)$. If we assume $x^2 \neq x$, the following are equivalent.

1 $\varphi(X)$ is irreducible (i.e. primitive). 2 $X^2 \not\equiv_{\varphi(X)} X$ and $X^{2^{nw-r}} \equiv_{\varphi(X)} X$.

Lemma (cycleB_dvdP)

Assume that the characteristic polynomial $\varphi_B(X)(= \det(XI - B))$ of B is irreducible. Then for any $q \in \mathbb{N}_{>0}$, the following are equivalent.

$$\mathbf{1} \ B^q = B$$

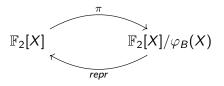
2
$$q-1$$
 is divided by $2^{nw-r}-1$.

Lemma (pm) $2^{624*32-31} - 1 = 2^{19937} - 1$ is a prime.

About Mersenne-Twister

Overview of the project

Presentations and equivalence


Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

Proof technique: Quotient structure

- We need to deal with the quotient of the polynomial ring $\mathbb{F}_2[X]$ by the ideal $(\varphi_B(X))$.
- MATHCOMP provides the construction of quotient rings for given ideals.
- We want further structures: of vector space and field.

About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

Proof technique: Quotient structure $\mathbb{F}_{2}[X]$ $\mathbb{F}_{2}[X]/\varphi_{B}(X)$

repr

We had to prove algebraic facts in addition to $\operatorname{MathCOMP}$, e.g.:

- Lemma pi_linear : the canonical surjection $\mathbb{F}_2[X] \xrightarrow{\pi} \mathbb{F}_2[X] / \varphi_B(X)$ is linear.
- Lemma QphiI_field : the quotient $\mathbb{F}_2[X]/\varphi_B(X)$ is a field.
- Lemma QphiIX_full and Lemma QphiIX_free : $\mathbb{F}_2[X]/\varphi_B(X)$ as a vector space has $1, X, X^2, \ldots, X^{nw-r}$ as its basis.
- Constructivist's note: the explicit form of an inverse element is given by Euclidean algorithm.

About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

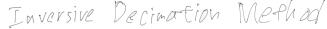
Conclusion and future work

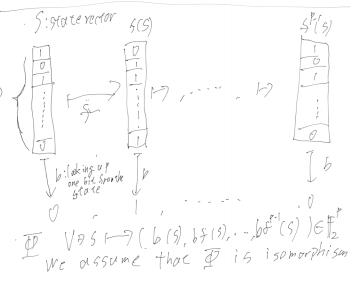
Inversive-decimation

About Mersenne-Twister

Overview of the project

Presentations and equivalence


Irreducibility implies Long Period


Inversivedecimation

Code generation

Conclusion and future work

About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

Inversive-decimation

Inversive Decimacion Method

 $5 H_{7}(b(5), b5(5), ..., bf(5), ..., bf(5), ..., bf^{2r2}(5))$ Decimation $\frac{1}{2} \left(b(57, b5^{e}(5), b5^{e}(5), ..., b5^{e}(5), ..., b5^{e}(5) \right)$ chase 5 s.e. S = [5] EMIT? proves that $|=^{1}(5)=5=) Group zenes ares by F \cong Gal((Fz)/Fz)$ =7 (Fp[:t]/q(5) \cong (Fz) ((f)) is =) period of f is z'-1 (chorn steristic polynomial) rc f

About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Lon Period

Inversivedecimation

Code generation

Conclusion and future work

Inversive-decimation

Inversive Decimation Method we assume S and b are compreable in O(1) and \$ -1 is computable in O(P). So we check that the period of 5 is2"-1 in O(p2) by Inversive decimation method. We Sormalize Inversive decimation method by log. and extract executable and fast enough C code. formalize of the proof is work in prograss

About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

Inversive-decimation

- Remaining tasks:
 - Infinite-dimensional vector space
 - Binding the algorithm and the proof
 - $\bullet\,$ The current version algorithm is not practical in ${\rm COQ}.$

About Mersenne-Twister

Overview of the project

Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

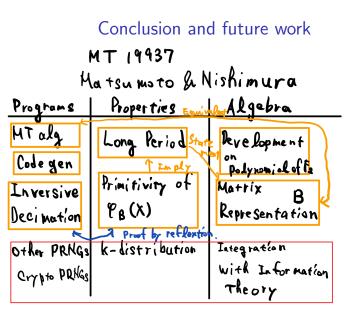
• Mersenne-Twister algorithm consists of binary arithmetic operations.

- BinNat library \rightarrow a word of C.
- N.lxor \rightarrow ^ (lxor operation)
- N.succ ightarrow _ + 1

Code Generation

About Mersenne-Twister

Overview of the project


Presentations and equivalence

Irreducibility implies Long Period

Inversivedecimation

Code generation

Conclusion and future work

- Our next plan is the Blue part, completing the long-period.
- The Red parts are future directions.