
Formal Verification and Code-Generation of
Mersenne-Twister Algorithm

1st Takafumi Saikawa
Graduate School of Mathematics

Nagoya University
Nagoya, Japan

tscompor@gmail.com

2nd Kazunari Tanaka
Graduate School of Mathematics

Nagoya University
Nagoya, Japan

tzskp1@gmail.com

3rd Kensaku Tanaka
IT Department
RAKUDO Inc.
Nagoya, Japan

kensaku tanaka@rakudo.io

Abstract—We formalize the pseudocode and linear-algebraic
presentations of Mersenne-Twister, and formally establish their
equivalence. Based on this formalization, we investigate the
long-period property of Mersenne-Twister, formally proving that
the property is reduced to the primitivity of the characteristic
polynomial of the matrix representation.

The formalization is done in COQ proof assistant. This enables
us to generate a C program code from the verified pseudocode
written in COQ.

I. INTRODUCTION

Pseudorandom number generators (PRNGs) are present
everywhere in modern computing systems. Among many
algorithms for PRNGs, Mersenne-Twister by Matsumoto and
Nishimura [1] features a very long-period (219937 − 1) of its
internal states and stochastic properties such as the equidistri-
bution of generated points in a fairly high-dimensional vector
space. These properties make Mersenne-Twister a suitable
choice for various applications including simulation uses such
as Monte Carlo methods.

Mersenne-Twister is presented in two ways in the original
paper [1]: one as a piece of pseudocode based on binary
arithmetic (i.e., operations on bit sequences), and another
as a series of linear transformations represented as matrix
multiplications. The pseudocode can be easily translated to
practical programming languages and used in applications. On
the other hand, the linear-algebraic presentation provides a
foundation for proving the properties of Mersenne-Twister.

These two presentations are implicitly identified in the liter-
ature and the results proved for the linear-algebraic version are
transported to the pseudocode version through this identifica-
tion. Since the two presentations are apparently quite different,
we want to be sure of the correctness of the identification
through a careful formalization, which is however not yet done
to the best of our knowledge.

In this paper, we fill this gap by formally proving the
equivalence of the two presentations, using the proof-assistant
COQ and the library MATHCOMP. Both presentations are
realized as COQ functions, each based on a different data
structure. We state and prove the equivalence through a pair

This is a preprint of a paper to be presented at ISITA 2020
http://www.isita.ieice.org/2020/home.html

of embedding and projection functions between these data
structures.

Thanks to this equivalence, we can attempt to formally
verify the properties of Mersenne-Twister by working on the
linear-algebraic presentation. As a work-in-progress result,
we show that the long-period property is reduced to the
primitivity of the characteristic polynomial of a matrix. We
also formalize an algorithm called inversive-decimation that is
used for proving the primitivity in the original paper [1].

Our formalization can also be combined with a code gener-
ation plugin [2] to translate the COQ functions for algorithms
(Mersenne-Twister and inversive-decimation) into C program
code. We can use it to reduce the possibility of bugs to
be introduced at a translation (e.g. a case in the standard
library for PHP [3]) by confining the risk into a dictionary
for translating the primitive operations and the plugin itself.

All of our COQ code is stored in a github repository [4].
In order to reproduce our environment and trace the proofs,
please follow the instructions provided in README.md and
Dockerfile in the repository.

II. FORMALIZATION OF MERSENNE-TWISTER ALGORITHM

In this section, we formalize the two presentations of
Mersenne-Twister algorithm. The first one is based on binary
arithmetic operations on an array of integers and is close to
implementations in practical programming languages such as
C. The second one is based on linear algebra and follows
the mathematical presentation in the original paper [1] After
defining these presentations, we conclude this section by
explaining the formal proof of the equivalence between them.

A. Algotirhm based on binary arithmetic

The first presentation is essentially the same as the original
pseudocode [1, Section 2.1]. The core of the algorithm is a
function next_random_state that computes the next state
from a given previous state. The state is represented by a
record random_state, which is just a list of natural numbers
with an index. Binary arithmetic operations that appear in
the pseudocode are realized as following COQ functions that
come from BinNat module in COQ’s standard library: N.lor,
N.land, N.lxor, N.shiftr, N.shiftl, and N.testbit.

Definition 1 (next_random_state in [4, mt.v]).

Variables len m r a w : N.
Variables u s t l b c : N.
Hypothesis rw : (r <= w)%nat.

Definition upper_mask :=
(N_of_word (make_upper_mask rw)).
Definition lower_mask :=
(N_of_word (make_lower_mask rw)).
Record random_state :=
{index : N; state_vector : seq N}.

Definition next_random_state
(rand : random_state) : (N * random_state) :=
let state_vec := state_vector rand in
let ind := index rand in
let current := nth 0 state_vec ind in
let next_ind := N.modulo (N.succ ind) len in
let next := nth 0 state_vec next_ind in
let far_ind := N.modulo (ind + m) len in
let far := nth 0 state_vec far_ind in
let z := N.lor (N.land current upper_mask)

(N.land next lower_mask) in
let xi := N.lxor (N.lxor far (N.shiftr z 1))

(if N.testbit z 0 then a else 0) in
let next_rand := {|
index := next_ind;
state_vector := set_nth 0 state_vec ind xi;

|} in
(xi, next_rand).

Definition tempering xi :=
let y1 := N.lxor xi (N.shiftr xi u) in
let y2 := N.lxor y1
(N.land (N.shiftl y1 s) b) in

let y3 := N.lxor y2
(N.land (N.shiftl y2 t) c) in

let y4 := N.lxor y3 (N.shiftr y3 l) in
y4.

We explain some of the lines above by their correspondence
to the pseudocode. In the following, the references to equa-
tions and pages point to those in the original description [1,
Section 2.1]. The values far and z correspond to xk+m

and (xu
k |xl

k+1) respectively, both apeearing in Equation (2.1).
The value xi is the composition of Equation (2.1) and the
equation for xA appearing at the end of p.8. The return value
(xi, next_rand) is a pair of the tempered random value
and the next random state. The auxiliary computation of values
y1, y2, y3, and y4 are called tempering, and correspond to
Equations (2.2), (2.3), (2.4), and (2.5), respectively.

B. Algorithm based on linear algebra

The second presentation is based on linear algebra. The
states are represented by elements in F19937

2 that is seen as a
vector space over F2, and the next random state is computed
from a given state by multiplying a matrix.

In the following, we abstract the magic number 19937 to
generalize the construction of the matrix.

Definition 2 (A, S, and B in [4, cycle.v]). Let n,w, r
be integers such that 2nw−r − 1 is a prime number, and
{ai}i=0...w−1 a sequence in F2. We define as follows the

(nw − r)-dimensional square matrix B which embodies the
linear-algebraic representation of Mersenne-Twister:

A =

1

1
. . .

1
a0 a1 a2 · · · aw−1

S =

(
1r

1w−r

)
A

B =

1w
1w

. . .
1w 1w

. . .
1w−r

S

C. Equivalence

We can now state the equivalence of these two algorithms,
namely, the function next_random_state (Definition 1) and
the linear transformation defined by multiplying the matrix
B (Definition 2). Here we just show the statements of a
central lemma and the equivalence theorem, and provide an
explanation about the difficulty in the formalized proof

The first step is to rewrite the multiplication by B into a
computation similar to Equation (2.1) in [1, Section 2.1].

Lemma 1 (computeB and mulBE in [4, cycle.v]). For any
bit sequence (xn−1, . . . ,x1,x0�w−r) ∈ Fnw−r

2 ,

(xn−1, . . . ,x1,x0�w−r)B = (xn, . . . ,x2,x1�w−r)

where

xn = xm +

(
1r

)
x1A+

(
1w−r

)
x0A

and xk�w−r is the first w − r bits of xk.

By this lemma, the multiplication by B is decomposed
into several primitive operations such as rotation, masking,
and addition of bits, still expressed in the language of linear
algebra.

In order to go over to the language of binary arithmetic,
we need to translate the data structures used for internal
states. This translation is given by an injective function
state_of_array that maps a vector to a list of integers
with index 0, and a surjective function array_of_state

that rotates the list of integers to normalize the index to 0
and extracts the bits as a vector. With these functions, the
equivalence theorem between the two presentations is stated
as follows:

Theorem 1 (next_random_stateE in [4, cycle.v]). The
following diagram

rand st N× rand st

Fnw−r
2 Fnw−r

2

next random state

array of state◦snd

B

state of array

commutes.

III. LONG-PERIOD PROPERTY OF MERSENNE-TWISTER

We can now investigate algebraic properties of Mersenne-
Twister using the algebraic definition presented in the previous
section. Here we describe the most peculiar property: the
period of cycle in Mersenne-Twister is very long. The matrix
representation of the algorithm plays a crucial role.

We consider the extension field F2nw−r over the binary field
F2 such that the degree [F2nw−r : F2] is nw − r. Let ϕ(X)
be the characteristic polynominal ϕ(X) of B.

The Galois group Gal(F2nw−r/F2) is generated by the
frobenius map σ(= x 7→ x2) ∈ Aut(F2nw−r). Because the
extension field F2nw−r is a group ring F2[Gal(F2nw−r/F2)],
we observe σnw−r = 1 which is equivalent to X2 6≡ϕ(X) X

and X2nw−r ≡ϕ(X) X . In addition, this condition will be
equivalent to primitivity of the characteristic polynominal
ϕ(X).

Then according to Cayley-Hamilton theorem, we can con-
clude that a period of the matrix B is 2nw−r − 1.

We wish to formalize above situations in COQ. For a better
readability of the discussion, we will explain the theorems and
proofs in natural language rather than COQ expressions.

In the following lemma, note that the primitivity and irre-
ducibility of a polynomial are equivalent notions.

Lemma 2. [irreducibleP (1 and 4), irreducibleP2 (1
and 3), expandF (2 and 4) in [4, irreducible.v]] Let
x ∈ F2[X]/ϕ(X). If we assume x2 6= x, the following are
equivalent.

1) ϕ(X) is irreducible.
2) σnw−r = 1.
3) σnw−rx = x.
4) X2 6≡ϕ(X) X and X2nw−r ≡ϕ(X) X .

Remark 1. Because we think that the frobenius map σ is just
a map, these statement make sense.

Proof. We will show that (3) implies (1). Assume that there
exist q1, q2 ∈ F2[X] such that ϕ(X) = q1q2 and deg q2 > 1.
Then we wish to show q2 = ϕ(X) i.e. q1 = 1. So we assume
q1 6= 1. Since if q1 = 0 then it is just a trivial case, we can
assume deg q1 > 1.

According to (3), a set F2[X]/ϕ(X) \ {0} is of the form
{xi+1 | i = 1, . . . , 2nw−r − 1}. We will excuse an above
statement. Because |F2[X]/ϕ(X) \ {0}| ≤ 2nw−r − 1, it is
suffice to show |{xi+1 | i = 1, . . . , 2nw−r − 1}| = 2nw−r − 1
i.e. for l which satisfies 0 < l < 2nw−r − 1, xl+1 6= x. So
we assume that there is l such that 0 < l < 2nw−r − 1 and

xl+1 = x. Because there is the minimum element m of a set
{l | 0 < l and xl+1 = x}, l and 2nw−r − 1 are divided by m.
An assumption x2 6= x means m 6= 1. So we can conclude
m = 2nw−r − 1. But it contradicts to l < 2nw−r − 1.

Let π : F2[X] → F2[X]/ϕ(X) be a canonical surjection.
We have 0 = πϕ(X) = πq1πq2, πq1 6= 0 and πq2 6= 0. So
there is an integer i such that 0 = xi+1 ∈ F2[X]/ϕ(X) \ {0}.
It is obviously a contradiction.

Implication of (4) to (1) is a special case of implication of
(3) to (1).

We will show that (1) implies (4). Since it trivially holds
X2 6≡ϕ(X) X , we will focus on X2nw−r ≡ϕ(X) X i.e. an
order o of πX is 2nw−r − 1. Note that |(F2[X]/ϕ(X))×| =
2nw−r − 1 is divided by o (by Lagrange’s theorem) and that
2nw−r − 1 is prime, we can conclude o = 2nw−r − 1.

We will show that (4) implies (2). Note that F2[X]/ϕ(X)
is a linear space which has a specific basis {πXi | i =
0, . . . , nw − r}, it is suffice to show that (πXi)2

nw−r

= πXi.
But it trivially holds.

In terms of the multiplication of B, the long-period property
is stated as follows:

Lemma 3 (cycleB_dvdP in [4, cycle.v]). Assume that the
characteristic polynomial ϕ(X) of B is irreducible. Then for
any q ∈ N>0, the following are equivalent.

1) Bq = B.
2) q − 1 is divided by 2nw−r − 1.

Proof. We first show that (1) implies (2). We begin by noting
that Bq and B are the evalutations by B of polynomials Xq

and X respectively:

Xq[X := B] = X[X := B].

We can calculate the inverses of these evaluations
(mx_inv_horner in [5, mxpoly.v]), which are polynomials
modulo ϕ(X).

Xq[X := B][X := B]−1 ≡ϕ(X) X[X := B][X := B]−1.

The evaluations and their inverses cancel out, and we obtain
that

Xq ≡ϕ(X) X.

By Lemma 2, we also have X2nw−r ≡ϕ(X) X . Since 2nw−r−
1 is prime, we can conclude by Lagrange’s theorem that q−1
is divided by 2nw−r − 1.

We next show that (2) implies (1). By Euclidean algo-
rithm, there are p(X), r(X) ∈ F2[X] such that Xq =
p(X)ϕ(X)+r(X) and deg r(X) < degϕ(X). Since Cayley-
Hamilton theorem tells that ϕ(B) = 0, Bq = r(B). For
the desired equality, it suffices to show that r(X) = X .
This is obtained again by Lemma 2 with noticing that
Xq = Xq−1+1 = X(2nw−r−1)i+1 ≡ϕ(X) X for the quotient
i = (q − 1)/(2nw−r − 1).

IV. ALGORITHM OF THE INVERSIVE-DECIMATION METHOD

In the previous section, we proved that the long-period
property of Mersenne-Twister is reduced to the irreducibility
of the characteristic polynomial of B. The remaining part,
the irreducibility is rather a difficult task. In the original
paper [1], its proof is achieved by the reflection on the
inversive-decimation algorithm. We attempted to formalize this
strategy, and currently formalized the algorithm itself as a COQ
function:
Definition generate a (state : state_vector) :=

let rand := make_mtRand state in
let start_word_seq :=
word_seq_of_state_vector state in
generate_aux a start_word_seq rand p2n.

Fixpoint decimate_aux
(words : word_seq) (acc : word_seq) times :=

match times with
| 0%nat => acc
| S times' =>
let j := plus (minus p times) 1%nat in
let k := minus (2%nat * j) 1%nat in
decimate_aux words
(set_nth_word_seq acc j
(nth_word_seq words k)) times'

end.

Definition decimate words :=
decimate_aux words words p.

Fixpoint process_aux a words times :=
match times with
| 0%nat => words
| S times' =>
let k := plus times (minus n 1%nat) in
let xk := nth_word_seq words k in
let kn := minus k n in
let xkn := nth_word_seq words kn in
let knm := plus kn m in
let xknm := nth_word_seq words knm in
let kn1 := plus kn 1%nat in
let xkn1 := nth_word_seq words kn1 in
let y := N.lxor (N.lxor xk xknm)

(if N.eqb (N.land xkn1 1) 0
then 0 else a) in

let y1 := N.shiftl y 1 in
let y2 :=

if N.eqb (N.land xkn1 1) 0
then N.land y1 bottom_zero_mask
else N.lor y1 bottom_one_mask in

let newxkn1 :=
N.lor (N.land upper_mask xkn1)

(N.land lower_mask y2) in
let newxkn :=

N.lor (N.land upper_mask y2)
(N.land lower_mask xkn) in

let words1 :=
set_nth_word_seq words kn1 newxkn1 in

let words2 :=
set_nth_word_seq words1 kn newxkn in

process_aux a words2 times'
end.

Definition process a (state : state_vector) :=
let expandedWords := generate a state in

let decimatedWords :=
decimate expandedWords in

let pn1 := minus p (minus n 1%nat) in
state_vector_of_word_seq
(process_aux a decimatedWords pn1).

We have so far succeeded in defining the above algorithm
and type-check it.

V. CODE GENERATION

We can utilize the code generation plugin for COQ [2] to
generate a working C program code for the algorithms for-
malized in this paper, namely Mersenne-Twister and inversive-
decimation.

As an example, we show the piece of generated C code for
next_random_state:
static prodNrnd
next_random_state(rand_state v1_rand)
{
list_N v2_state_vec, v35_l;
N v3_ind, v4_n, v6_current, v7_n;
N v8_n, v9_next_ind, v10_n;
N v12_next, v13_n, v14_n, v15_n;
N v16_far_ind, v17_n;
N v19_far, v20_n, v21_n, v22_n;
N v23_n, v24_z;
N v26_n, v27_n, v28_n, v29_n;
N v31_n, v32_xi, v33_n;
nat v5_n, v11_n, v18_n, v34_n;
positive v25_p;
bool v30_b;
rand_state v36_next_rand;
v2_state_vec = STATE_VECTOR(v1_rand);
v3_ind = INDEX(v1_rand);
v4_n = N0();
v5_n = nat_of_bin(v3_ind);
v6_current = nth(v4_n, v2_state_vec, v5_n);
v7_n = succ(v3_ind);
v8_n = len();
v9_next_ind = modulo(v7_n, v8_n);
v10_n = N0();
v11_n = nat_of_bin(v9_next_ind);
v12_next = nth(v10_n, v2_state_vec, v11_n);
v13_n = m();
v14_n = add(v3_ind, v13_n);
v15_n = len();
v16_far_ind = modulo(v14_n, v15_n);
v17_n = N0();
v18_n = nat_of_bin(v16_far_ind);
v19_far = nth(v17_n, v2_state_vec, v18_n);
v20_n = upper_mask();
v21_n = land(v6_current, v20_n);
v22_n = lower_mask();
v23_n = land(v12_next, v22_n);
v24_z = lor(v21_n, v23_n);
v25_p = xH();
v26_n = Npos(v25_p);
v27_n = shiftr(v24_z, v26_n);
v28_n = lxor(v19_far, v27_n);
v29_n = N0();
v30_b = testbit(v24_z, v29_n);
switch (v30_b)
{

default:
v31_n = a();
break;

case 0:
v31_n = N0();
break;

}
v32_xi = lxor(v28_n, v31_n);
v33_n = N0();
v34_n = nat_of_bin(v3_ind);
v35_l =
set_nth(v33_n, v2_state_vec, v34_n, v32_xi);
v36_next_rand =
Build_random_state(v9_next_ind, v35_l);
return make_prodNrnd(v32_xi, v36_next_rand);

}

VI. CONCLUSION AND FUTURE WORK

We have formalized two presentations of Mersenne-Twister.
One is the pseudocode, and the other is linear-algebraic. We
have formally proved the equivalence of these two presenta-
tions. Based on these formalization, we formally investigated
the long-period property of Mersenne-Twister, proving that the
property is reduced to the irreducibility of the characteristic
polynomial of a matrix. We started to prove the primitivity
by formalizing the inversive-decimation algorithm. We have
shown that the COQ definitions of algorithms using binary
arithmetic can be fed to the code generation method to achieve
a runnable C code.

In the future work, we plan to complete the proof of the
primitivity using the inversive-decimation algorithm. We also
plan to formalize other properties of Mersenne-Twister such as
the distribution of generated points in a high-dimension space.
Apart from Mersenne-Twister, we have as a long-term plan to
generalize this work to other pseudorandom number genera-
tors, providing a framework to formalize broader examples.

REFERENCES

[1] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator,”
ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan. 1998.
[Online]. Available: http://doi.acm.org/10.1145/272991.272995

[2] A. Tanaka, R. Affeldt, and J. Garrigue, “Safe low-level code generation
in Coq using monomorphization and monadification,” Journal of Infor-
mation Processing, vol. 26, pp. 54–72, 2018.

[3] “Fix #71152: mt rand() returns the different values from origi-
nal mt19937ar.c #1681,” https://github.com/php/php-src/pull/1681/files,
2016.

[4] K. Tanaka, K. Tanaka, and T. Saikawa, “Formalization of mersenne-
twister,” https://github.com/tzskp1/codegen-examples/releases/tag/
ISITA2020 paper, 2020.

[5] Mathematical Components Team, “Mathematical Components library,”
https://github.com/math-comp/math-comp, 2007, development version.
Last stable version 1.10 (2019) available on the same website.

