
Ongoing work:
Verifying the safety of a MPC/SMC
protocol & language by Coq
Greg Weng TPP 2023

Greg Weng

2023.Feb: Mercari R4D program -> Nagoya University Ph.D. student (大学院多元数理科学研究科)

2019 ~: Mercari, software engineer: Golang

2017 - 2019: Rakuten, software engineer: JavaScript

2014 - 2017: Mozilla Taipei, software engineer: C, C++, JavaScript

2012 - 2014: National Chengchi University (Taiwan), CS department (master's degree): Haskell, Ruby

Research Background

MPC/SMC
Secure Multi-party Computation

smcSL
DSL for MPC/SMC

Commodity Server Model

Is Based on

As building blocks of

SMC Scalar-productProtocol
As a building block of

SMC Protocols

As a building block of

Research Background

MPC/SMC
Secure Multi-party Computation

smcSL
DSL for MPC/SMC

Implicit Information Flow
Leakage from a safe protocol & language

Commodity Server Model

Is Based on

As building blocks of

SMC Scalar-productProtocol
As a building block of

SMC Protocols

As a building block of

May have issues of

Information Theoretic Safe

By pen-and-paper has been proven

Research Background

MPC/SMC
Secure Multi-party Computation

smcSL
DSL for MPC/SMC

Implicit Information Flow
Leakage from a safe protocol & language

Zero-Knowledge Protocol

Commodity Server Model

Is Based on

Can be used in

As building blocks of

SMC Scalar-productProtocol
As a building block of

SMC Protocols

As a building block of

May have issues of

Information Theoretic Safe

By pen-and-paper has been proven

Coq

Quantitative Analysis of
Information Flow

Research Background

MPC/SMC
Secure Multi-party Computation

smcSL
DSL for MPC/SMC

Implicit Information Flow
Leakage from a safe protocol & language

Zero-Knowledge Protocol

Commodity Server Model

Is Based on

Can be used in

As building blocks of

SMC Scalar-productProtocol
As a building block of

SMC Protocols

As a building block of

May have issues of

Information Theoretic Safe

By pen-and-paper has been proven

Coq

Quantitative Analysis of
Information Flow

Can be used in?

Proofs in ?

Analyzed by ?

MPC/SMC

MPC/SMC stands for "Multi-Party Computation"

and "Secure Multi-party Computation"

It is a security domain about two or more parties

collaboratively compute results, without revealing

each party's secret data over what they agree to

share.

Nowadays this tech is also used for digital wallet
Neither A nor B agree to reveal their bidding price
Both of them want to know the bidding result (A >? B)
--> This indirectly reveal other properties of their secrets:

If not (A > B),
for A, a new fact is that B's price is larger than $500
for B, a new fact is that A's price is smaller than $900

Commodity Server Model MPC/SMC

* Wenliang Du, Zhijun Zhan. A practical approach to solve Secure Multi-party Computation problems. NSPW 2002: Proceedings of the 2002 Workshop on New Security Paradigms; 2002 Sep 23-26;
Virginia Beach, Virginia USA. New York, NY, USA: ACM Press; 2002. p. 127-35.

It is a model proposed by Wenliang Du and
Zhijun Zhan*, to simplify the infrastructure
and computation difficulties for two and more
parties, by introducing a "commodity server"
in the MPC/SMC computation flow.

The only role of this commodity server, is to
issue necessary random values to guarantee
when Alice and Bob compute collaboratively

With MPC/SMC protocols, no one should
obtain more information than they agree to
share, from the data they pass to each other.

Alice Bob

Two-Party Model

Alice Bob

Commodity-Server Model

Commodity
Server

random values random values

Scalar-product based MPC/SMC protocols

[Scalar product protocol -- Commodity server approach] ref1

For example:

Xa = (3), Xb = (2)
Commodity Ra, Rb, ra, rb = (9), (8), 13, 59
Results ya, yb = -60, 66

ya + yb = 6 = (3) . (2) = Xa . Xb

Local inputs: Xa, Xb
Shared output: ya, yb

→ Alice and Bob collaboratively computed the result y = ya + yb, where y = Xa . Xb
→ If numbers are real numbers*, Alice and Bob cannot know each other's secret vectors

Scalar-product based MPC/SMC protocols

Alice Bob

Commodity
Server

Xa = (3) Xb = (2)

[Scalar product protocol -- Commodity server approach] ref1

Alice Bob

Commodity
Server

Ra, ra
(9), 13

Rb, rb = Ra.Rb - ra
(8), = 59

Xa = (3) Xb = (2)

Alice Bob

Commodity
Server

Ra, ra
(9), 13

Rb, rb
(8), 59

Xa = (3)
Xa' = (12) = Xa + Ra

Xb = (2)
Xb' = (10) = Xb + Rb

Generate then send to each other

Scalar-product based MPC/SMC protocols
[Scalar product protocol -- Commodity server approach] ref1

Alice Bob

Commodity
Server

Ra, ra
(9), 13

Rb, rb
(8), 59

Xa = (3)
Xb' = (10)

Xb = (2)
Xa' = (12)

Alice Bob

Commodity
Server

Ra, ra
(9), 13

Rb, rb
(8), 59

Xa = (3)
Xb' = (10)

Xb = (2)
Xa' = (12)
yb = 66 from RNG
t = (Xb . Xa') + rb - yb
 = 24 + 59 - 66
 = 17

Alice Bob

Commodity
Server

Ra, ra
(9), 13

Rb, rb
(8), 59

Xa = (3)
Xb' = (10)
t = 17

Xb = (2)
Xa' = (12)
yb = 66 from RNG

Generate then send to

Scalar-product based MPC/SMC protocols
[Scalar product protocol -- Commodity server approach] ref1

Alice Bob

Commodity
Server

Ra, ra
(9), 13

Rb, rb
(8), 59

Xa = (3)
Xb' = (10)
t = 17
ya = t - (Ra . X'b) + ra
 = 17 - 90 + 13
 = -60

Xb = (2)
Xa' = (12)
yb = 66 from RNG

Alice Bob

Commodity
Server

Ra, ra
(9), 13

Rb, rb
(8), 59

Xa = (3)
ya = -60

Xb = (2)
yb = 66

y = 6 = ya + yb = Xa . Xb

Scalar-product based MPC/SMC protocols

[Scalar product protocol -- Commodity server approach] ref1

(Alice, Bob) hold

Local inputs (Xa, Xb)

Shared outputs (ya, yb)

This Scalar-product protocol can be denoted as ref2:

Scalar-product based MPC/SMC protocols
[Scalar product protocol -- Commodity server approach] ref2

By this basic building block, Academia Sinica in Taiwan built other secure protocols for MPC/SMC arithmetic

operations, including comparison, conditional expression, etcref2 .

In following research ref3, more protocols were invented to support both integers and floating points.

Scalar-product based MPC/SMC protocolsref2

[Scalar product protocol -- y = Xa . Xb]

Scalar-product based MPC/SMC protocolsref2

[Conditional expression -- Alice ba xa ya, Bob bb xb yb,
result: (b ? xa + xb : ya + yb)]

Alice Bob

Commodity
Server

(ba, xa, ya) (bb, xb, yb)Local Inputs:

Protocol Outputs: za zb

z =

Scalar-product based MPC/SMC protocolsref2

All protocols are from: Shen, Chih-Hao, Justin, Zhan, Tsan-Sheng, Hsu, Churn-Jung, Liau, and Da-Wei, Wang. "Scalar-product based
secure two-party computation." . In 2008 IEEE International Conference on Granular Computing (pp. 556-561).2008.

[Product -- Alice: xa ya, Bob: xb yb, result: z = x* y]

Alice Bob

Commodity
Server

(xa, ya) (xb, yb)Local Inputs:

Protocol Outputs: za zb

z = za + zb = (xa + xb) * (ya + yb) = x * y

Scalar-product, protocols, and the scripting language

Ref.2

From Weng, Cheng-Hui, Chen Kung, "A Modular Scripting
Language for Secure Multi-Party Computation", master thesis

Compose SMC program in smcSL
To invoke SMC protocols safely

[Scalar product protocol -- y = Xa . Xb,
(commodity approach)]

[Scalar product protocol -- y = Xa . Xb,
(commodity approach)]

[Z2-to-Zn] [Zn-to-Z2] [Product]

[Comparison] [Division]
[Conditional
Expression]

Arrow means: A -(is used to build)->B

Ref.1

SMC Scalar-product SMC Protocols SMC Scripting Language (smcSL)is used to build is used to build

Application: Public health data analysisref8

CDC NHI

Commodity
Server

CDC Local Inputs: Array of (0,1,0,0,.....1) (length: 23 millions; population in Taiwan)
Meaning: #N person got Dengue fever (a seasonal epidemic) = 1 or 0

NHI Local Inputs: Array of (0,1,0,0,.....1) (length: 23 millions; population in Taiwan)
Meaning: #N person in the past season receive outpatient or hospitality services due to Dengue fever

Result: Array of (1,0,0,0,.....0) (length: 23 millions)
Meaning: how much did the Dengue fever cost in this season

SMC Protocols used: conditional expression:

total := CDC[i] == NHI[i] ? total+1 : total

Chen, K., Hsu, T. S., Huang, W. K., Liau, C. J., &
Wang, D. W. (2012). Towards a Scripting
Language for Automating Secure Multiparty
Computation.

Research Goal: Verification in Coq (SMC protocols)

1. Verify SMC Scalar-product (require: list/vector libs) (GitHub repo: weng-chenghui/smc-coq)

2. Build protocols as ref.2 describes and prove their properties

3. Export them as module functions

4. Make protocols in the form (Xa, Xb)-> (ya, yb) Monadic

a. `->` may be a SMC interface operation for different instances

b. Find some laws like in the paper Just do it: simple monadic equational reasoning Ref5

https://github.com/weng-chenghui/smc-coq
https://dl.acm.org/doi/10.1145/2034773.2034777

Research Goal: Verification in Coq (smcSL)

Three types of monad: Local, Observation, Command (reference: monae)

1. Local: where actual states are manipulated

2. Observation: where traces for reasoning can be collected -- inputs and outputs
to each local

3. Command: where smcSL program interpreted to SMC protocol executations

4. Formalize the information flow like in the paper:
Quantitative information flow with monads in haskell Ref6

https://github.com/affeldt-aist/monae
https://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/kuifje.pdf

The original motivation: even if protocols have been proven
safe ref3 , the information flow may still leak something

has been proven information-theoretically saferef3

can still leak some information if it builds the
conditional loop as a language feature

→ implicit information flow
→ how to detect and how to quantify the leakage?

Just do it: simple monadic equational reasoningRef5

Authors: Jeremy Gibbons and Ralf Hinze

It shows:

1. How to prove a program's claims by reasoning each monadic program step

2. These reasoning steps (and thus the proof) are instance-independant

a. With only the monadic interface, one can claim and prove properties without knowing the instance

→ SMC protocols can be described in monadic steps, and thus their claims can be reasoned in the same way

→ Especially these protocols are actually used by the domain-specific language: smcSL

Quantitative information flow with monads in haskellRef6

Authors: Jeremy Gibbons, Annabelle McIver, Carroll Morgan, Tom Schrijvers

It shows:

1. How to define a Monad with probability and combine it with the information leakage analysis

a. Tracing how much information will be leaked in programs that are composed by leaking monadic operations

2. A language (Kuifje) and use it to analyze information leakage with state updating programs

→ A related work for analyzing smcSL

→ Yet the issue "protocols are safe but progam leaks information" still need some more work

Possible extensions
1. Extend the commodity-server-based SMC scalar product to N parties, not just two parties

a. Instead of scalar product, determinant seems to have the potential to extend the protocol to N parties

b. But need to solve the problem of padding numbers when inputs cannot form a square matrix

2. And also extend the SMC protocols build on it

3. With Coq verification

4. Use and extend this N parties SMC protocol to the zero-knowledge-protocol that described in the paper ref7:

Zero-knowledge from secure multiparty computation

https://dl.acm.org/doi/abs/10.1145/1250790.1250794

Zero-knowledge from secure multiparty computationref7

Authors: Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai

It shows:

1. A N-party MPC/SMC program can be used as a problem in ZKP with lower cost compared to 3-coloring

problem or Hamiltonicity

2. The zero-knowledge protocol use such a MPC/SMC program can satisfy three properties (completness,

soundness, and zero-knowledge), even if there are some corrupted MPC/SMC players

Difficulties & finds
1. Coq

2. Work & Study at the same time

3. Culture shock: academic vs. industrial documents, codes, discussions, and strategies to solve problems

Difficulties & finds (Coq)
As a software engineer, most of time people expect to find immediately usable examples or specs.

Or at least with only code, it is still readable to understand how the code work.

Also with API references, one should be able to complete most of work without asking anyone.

Difficulties & finds (Coq)
As a Ph.D. student,

Most of time people expect to find immediately usable examples or specs.

Or at least with only code, it is still readable to understand how the code work.

Also with API references, one should be able to complete most of work without asking anyone.

→ I'm still trying to get used to Coq coding style (with SSReflect) ,

and how to accept myself when a single // blocks me to parse the whole proof,

or when there is a bug in old Coq code, by adding some magic terms or splitting steps the issues are gone

Difficulties & finds (culture shock)
As a software engineer, most of time we are asked to workaround issues & copy existing solutions to meet business
requirements.

There is no time and no priority to study and solve a problem thoroughly, or create something with comprehensive design.

For solving problems

1. Can we reduce the impact to end
users, or other systems?

2. Can we solve it within one week?

3. Is there any existing workaround or
solution we can easily apply?

4. Does this problem with reduced
impact, really worth to solve?

For building something new

1. Can we reach business requirements fast and
cheap?

2. If generalization means no one can see its value,
we choose copying code and specializing it for one
business purpose.

3. "Edge cases" = never need to prevent them from
happening, unless they really happen

Difficulties & finds (culture shock)
Also as a software engineer, people expect to output some results within reasonable time

Or if after a while we cannot have the expected result, at least we know the reason

Difficulties & finds (culture shock)
Also as a software engineer, people expect to output some results within reasonable time.

Or if after a while we cannot have the expected result, at least we know the reason.

And how much resource we already spent, and if we continue, how much we will spend.

Result <-> Time <-> People <-> Priority <-> Impact

Difficulties & finds (culture shock)
Also as a software engineer, people expect to output some results within reasonable time.

Or if after a while we cannot have the expected result, at least we know the reason.

And how much resource we already spent, and if we continue, how much we will spend.

Result <-> Time <-> People <-> Priority <-> Impact

As a Ph.D. student, there are so many possible paths, papers, ideas, things-to-study that may all lead to a dead end.

Result <?> Time <?> People <?> Priority <?> Impact

Q&A

References
1. Wenliang Du, Zhijun Zhan. A practical approach to solve Secure Multi-party Computation problems. NSPW 2002: Proceedings of the 2002

Workshop on New Security Paradigms; 2002 Sep 23-26; Virginia Beach, Virginia USA. New York, NY, USA: ACM Press; 2002. p. 127-35.

2. Shen, Chih-Hao, Justin, Zhan, Tsan-Sheng, Hsu, Churn-Jung, Liau, and Da-Wei, Wang. "Scalar-product based secure two-party computation." In
2008 IEEE International Conference on Granular Computing (pp. 556-561).2008.

3. Wang, D. W., Liau, C. J., Chiang, Y. T., & Hsu, T. S. (2006). Information theoretical analysis of two-party secret computation. In Data and Applications
Security XX: 20th Annual IFIP WG 11.3 Working Conference on Data and Applications Security, Sophia Antipolis, France, July 31-August 2, 2006.
Proceedings 20 (pp. 310-317). Springer Berlin Heidelberg.

4. Weng, Cheng-Hui, Chen Kung "模組化之安全多方計算領域專屬腳本語言 A Modular Scripting Language for Secure Multi-Party Computation"

5. Gibbons, J., & Hinze, R. (2011). Just do it: simple monadic equational reasoning. ACM SIGPLAN Notices, 46(9), 2-14.

6. Gibbons, J., McIver, A., Morgan, C., & Schrijvers, T. (2019). Quantitative information flow with monads in haskell. Foundations of Probabilistic
Programming.

7. Ishai, Y., Kushilevitz, E., Ostrovsky, R., & Sahai, A. (2007, June). Zero-knowledge from secure multiparty computation. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing (pp. 21-30).

8. Chen, K., Hsu, T. S., Huang, W. K., Liau, C. J., & Wang, D. W. (2012). Towards a Scripting Language for Automating Secure Multiparty Computation.

